Text Summarization

FactKB: Generalizable Factuality Evaluation using Language Models Enhanced with Factual Knowledge

Evaluating the factual consistency of automatically generated summaries is essential for the progress and adoption of reliable summarization systems. Despite recent advances, existing factuality evaluation models are not robust, being especially prone to entity and relation errors in new domains. We propose FactKB, a simple new approach to factuality evaluation that is generalizable across domains, in particular with respect to entities and relations. FactKB is based on language models pretrained using facts extracted from external knowledge bases.

Correcting Diverse Factual Errors in Abstractive Summarization via Post-Editing and Language Model Infilling

Abstractive summarization models often generate inconsistent summaries containing factual errors or hallucinated content. Recent works focus on correcting factual errors in generated summaries via post-editing. Such correction models are trained using adversarial non-factual summaries constructed using heuristic rules for injecting errors. However, generating non-factual summaries using heuristics often does not generalize well to actual model errors. In this work, we propose to generate hard, representative synthetic examples of non-factual summaries through infilling language models.

StructSum: Summarization via Structured Representations

Abstractive text summarization aims at compressing the information of a long source document into a rephrased, condensed summary. Despite advances in modeling techniques, abstractive summarization models still suffer from several key challenges: (i) layout bias: they overfit to the style of training corpora; (ii) limited abstractiveness: they are optimized to copying n-grams from the source rather than generating novel abstractive summaries; (iii) lack of transparency: they are not interpretable. In this work, we propose a framework based on document-level structure induction for summarization to address these challenges.